809 research outputs found

    Visible spatial contiguity of social information and reward affects social learning in brown capuchins (<i>Sapajus apella</i>) and children (<i>Homo sapiens</i>)

    Get PDF
    Animal social learning is typically studied experimentally by the presentation of artificial foraging tasks. Although productive, results are often variable even for the same species. We present and test the hypothesis that one cause of variation is that spatial distance between rewards and the means of reward release causes conflicts for participants’ attentional focus. We investigated whether spatial contiguity between a visible reward and the means of release would affect behavioral responses that evidence social learning, testing 21 brown capuchins (Sapajus apella), a much studied species with variant evidence for social learning, and 180 two- to four-year old human children (Homo sapiens), a benchmark species known for a strong social learning disposition. Participants were presented with a novel transparent apparatus where a reward was either proximal or distal to a demonstrated means of releasing it. A distal reward location decreased attention towards the location of the demonstration and impaired subsequent success in gaining rewards. Generally, the capuchins produced the alternative method to that demonstrated whereas children copied the method demonstrated, although a distal reward location reduced copying in younger children. We conclude that some design features in common social learning tasks may significantly degrade the evidence for social learning. We have demonstrated this for two different primates but suggest that it is a significant factor to control for in social learning research across all taxa

    Studying children’s social learning experimentally “in the wild”

    Get PDF
    Diffusion studies are taking us a step closer to understanding social learning and cultural transmission in young children. The first half of this article presents a review that focuses on four main cultural issues addressed by diffusion studies: (1) horizontal transmission, including child-to-child learning; (2) learning in children’s everyday environments (“in the wild”); (3) the experience of multiple demonstrations and attempts at mastering new tasks; and (4) the iterative process of learning across multiple cultural “generations.” The second half of the article introduces an open-diffusion experiment. After an initial asocial-learning phase in which children had the chance to discover two possible solutions to a puzzle box, the box was brought into the children’s playgroup, thus allowing observational learning. Although variation of method use occurred in the asocial-learning phase, by the end of the second day of the open diffusion, the group had converged on a single method. The open-diffusion approach allowed the documentation of social interactions not seen in the dyadic studies typical of the field, including both coaction and scrounging, the significance of which for cultural transmission is discussed

    Cultural diffusion in humans and other animals

    Get PDF
    This is the author's post print version of an article published in definitive form in Current Opinion in Psychology, Volume 8, April 2016, Pages 15–21.The definitive published version is available from: doi:10.1016/j.copsyc.2015.09.002Available online 14 September 2015Copyright © 2015 Elsevier Ltd.Recent years have seen an enormous expansion and progress in studies of the cultural diffusion processes through which behaviour patterns, ideas and artifacts are transmitted within and between generations of humans and other animals. The first of two main approaches focuses on identifying, tracing and understanding cultural diffusion as it naturally occurs, an essential foundation to any science of culture. This endeavor has been enriched in recent years by sophisticated statistical methods and surprising new discoveries particularly in humans, other primates and cetaceans. This work has been complemented by a growing corpus of powerful, purpose-designed cultural diffusion experiments with captive and natural populations that have facilitated the rigorous identification and analysis of cultural diffusion in species from insects to humans.John Templeton Foundatio

    The spread of a novel behaviour in wild chimpanzees : new insights into the ape cultural mind

    Get PDF
    TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).For years, the animal culture debate has been dominated by the puzzling absence of direct evidence for social transmission of behavioural innovations in the flagship species of animal culture, the common chimpanzee. Although social learning of novel behaviours has been documented in captivity, critics argue that these findings lack ecological validity and therefore may not be relevant for understanding the evolution of culture. For the wild, it is possible that group-specific behavioural differences emerge because group members respond individually to unspecified environmental differences, rather than learning from each other. In a recent paper, we used social network analyses in wild chimpanzees (Pan troglodytes schweinfurthii) to provide direct evidence for social transmission of a behavioural innovation, moss-sponging, to extract water from a tree hole. Here, we discuss the implications of our findings and how our new methodological approach could help future studies of social learning and culture in wild apes.Publisher PDFPeer reviewe

    Behavioral conservatism is linked to complexity of behavior in chimpanzees (<i>Pan troglodytes</i>):implications for cognition and cumulative culture

    Get PDF
    Cumulative culture is rare, if not altogether absent in nonhuman species. At the foundation of cumulative learning is the ability to modify, relinquish, or build upon previous behaviors flexibly to make them more productive or efficient. Within the primate literature, a failure to optimize solutions in this way is often proposed to derive from low-fidelity copying of witnessed behaviors, suboptimal social learning heuristics, or a lack of relevant sociocognitive adaptations. However, humans can also be markedly inflexible in their behaviors, perseverating with, or becoming fixated on, outdated or inappropriate responses. Humans show differential patterns of flexibility as a function of cognitive load, exhibiting difficulties with inhibiting suboptimal behaviors when there are high demands on working memory. We present a series of studies on captive chimpanzees that indicate that behavioral conservatism in apes may be underlain by similar constraints: Chimpanzees showed relatively little conservatism when behavioral optimization involved the inhibition of a well-established but simple solution, or the addition of a simple modification to a well-established but complex solution. In contrast, when behavioral optimization involved the inhibition of a well-established but complex solution, chimpanzees showed evidence of conservatism. We propose that conservatism is linked to behavioral complexity, potentially mediated by cognitive resource availability, and may be an important factor in the evolution of cumulative culture.</p

    Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees

    Get PDF
    The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe

    Eugenio Lecaldano on Bioethics

    Get PDF
    Eugenio Lecaldano offers an important contribution to the tradition of italian liberal thought. In his book on bioethics he deals with the subject’s most relevant topics by taking a utilitarian perspective , which clearly demonstrates the influence of J.S. Mill’s philosophy. The indication of some significant analogies and distinction among different moral problems is one of the most interesting and useful aspects of Lecaldano’s work

    Field experiments with wild primates reveal no consistent dominance-based bias in social learning

    Get PDF
    Directed social learning suggests that information flows through social groups in a nonrandom way, with individuals biased to obtain information from certain conspecifics. A bias to copy the behaviour of more dominant individuals has been demonstrated in captive chimpanzees, Pan troglodytes, but has yet to be studied in any wild animal population. To test for this bias using a field experiment, one dominant and one low-ranking female in each of three groups of wild vervet monkeys, Chlorocebus aethiops pygerythrus, was trained on alternative methods of opening an 'artificial fruit'. Following 100 demonstrations from each model, fruits that could be opened either way were presented to each group and all openings were recorded. Overall, the dominant females were not attended to more than low-ranking females during the demonstrations, nor were their methods preferentially used in the test phase. We conclude that these monkeys show no overall bias to copy high-ranking models that would lead to a high-ranking model's behaviour becoming more prevalent in the group than a behaviour demonstrated by a low-ranking model. However, by contrast, there were significant effects of observer monkeys' rank and sex upon the likelihood they would match the dominant model. Additionally we found that the dominant models were more likely to stick to their initially learned method than were low-ranking model

    Evidence for Emulation in Chimpanzees in Social Settings Using the Floating Peanut Task

    Get PDF
    The authors have no support or funding to report.Background: It is still unclear which observational learning mechanisms underlie the transmission of difficult problem-solving skills in chimpanzees. In particular, two different mechanisms have been proposed: imitation and emulation. Previous studies have largely failed to control for social factors when these mechanisms were targeted. Methods: In an attempt to resolve the existing discrepancies, we adopted the 'floating peanut task', in which subjects need to spit water into a tube until it is sufficiently full for floating peanuts to be grasped. In a previous study only a few chimpanzees were able to invent the necessary solution (and they either did so in their first trials or never). Here we compared success levels in baseline tests with two experimental conditions that followed: 1) A full model condition to test whether social demonstrations would be effective, and 2) A social emulation control condition, in which a human experimenter poured water from a bottle into the tube, to test whether results information alone (present in both experimental conditions) would also induce successes. Crucially, we controlled for social factors in both experimental conditions. Both types of demonstrations significantly increased successful spitting, with no differences between demonstration types. We also found that younger subjects were more likely to succeed than older ones. Our analysis showed that mere order effects could not explain our results. Conclusion: The full demonstration condition (which potentially offers additional information to observers, in the form of actions), induced no more successes than the emulation condition. Hence, emulation learning could explain the success in both conditions. This finding has broad implications for the interpretation of chimpanzee traditions, for which emulation learning may perhaps suffice.Publisher PDFPeer reviewe

    The Number of Cultural Traits Is Correlated with Female Group Size but Not with Male Group Size in Chimpanzee Communities

    Get PDF
    What determines the number of cultural traits present in chimpanzee (Pan troglodytes) communities is poorly understood. In humans, theoretical models suggest that the frequency of cultural traits can be predicted by population size. In chimpanzees, however, females seem to have a particularly important role as cultural carriers. Female chimpanzees use tools more frequently than males. They also spend more time with their young, skewing the infants' potential for social learning towards their mothers. In Gombe, termite fishing has been shown to be transmitted from mother to offspring. Lastly, it is female chimpanzees that transfer between communities and thus have the possibility of bringing in novel cultural traits from other communities. From these observations we predicted that females are more important cultural carriers than males. Here we show that the reported number of cultural traits in chimpanzee communities correlates with the number of females in chimpanzee communities, but not with the number of males. Hence, our results suggest that females are the carriers of chimpanzee culture
    • 

    corecore